F.LE.A.4: Exponential Decay

1 Depreciation (the decline in cash value) on a car can be determined by the formula \(V = C(1 - r)^t \), where \(V \) is the value of the car after \(t \) years, \(C \) is the original cost, and \(r \) is the rate of depreciation. If a car’s cost, when new, is $15,000, the rate of depreciation is 30\%, and the value of the car now is $3,000, how old is the car to the nearest tenth of a year?

2 The amount \(A \), in milligrams, of a 10-milligram dose of a drug remaining in the body after \(t \) hours is given by the formula \(A = 10(0.8)^t \). Find, to the nearest tenth of an hour, how long it takes for half of the drug dose to be left in the body.

3 The equation for radioactive decay is \(p = (0.5)^{\frac{t}{H}} \), where \(p \) is the part of a substance with half-life \(H \) remaining radioactive after a period of time, \(t \). A given substance has a half-life of 6,000 years. After \(t \) years, one-fifth of the original sample remains radioactive. Find \(t \), to the nearest thousand years.

4 One of the medical uses of Iodine–131 (I–131), a radioactive isotope of iodine, is to enhance x-ray images. The half-life of I–131 is approximately 8.02 days. A patient is injected with 20 milligrams of I–131. Determine, to the nearest day, the amount of time needed before the amount of I–131 in the patient’s body is approximately 7 milligrams.

5 A radioactive substance has a mass of 140 g at 3 p.m. and 100 g at 8 p.m. Write an equation in the form \(A = A_0 \left(\frac{1}{2} \right)^{\frac{t}{h}} \) that models this situation, where \(h \) is the constant representing the number of hours in the half-life, \(A_0 \) is the initial mass, and \(A \) is the mass \(t \) hours after 3 p.m. Using this equation, solve for \(h \), to the nearest ten thousandth. Determine when the mass of the radioactive substance will be 40 g. Round your answer to the nearest tenth of an hour.